# SPECTROPHOTOMETRIC STUDY OF THE COMPLEX EQUILIBRIA OF CADMIUM(II) IONS WITH 4-(2-PYRIDYLAZO)RESORCINE (PAR) USING THE SQUAD-G PROGRAM AND THE METHOD OF DETERMINING Cd(II) IONS WITH PAR 

Sylva Vlč̌ková, Luděk Janč̌ář, Vlastimil Kubáñ and Josef Havel<br>Department of Analytical Chemistry,<br>J. E. Purkyne University, 61137 Brno

Received October 11th, 1980


#### Abstract

The existence of the red-orange $\mathrm{CdLH}^{+}$complex $\left(\lambda_{\max }=406 \mathrm{~nm}, \varepsilon_{\text {max }}=1.78 \cdot 10^{4} \mathrm{mmol}^{-1}\right.$ $\left.. \mathrm{cm}^{2}, \log * \beta_{111}=-1 \cdot 66 \pm 0.04\right)$ and CdL complex $\left(\lambda_{\max }=495 \mathrm{~nm}, \varepsilon_{\max }=3.2 .10^{4} \mathrm{mmol}^{-1}\right.$. $. \mathrm{cm}^{2}, \log { }^{*} \beta_{112}=-8.25 \pm 0.05$ ) was demonstrated in aqueous solutions of PAR with a concentration excess of $\mathrm{Cd}(\mathrm{II})$ ions. It was shown that a $10 \% \mathrm{v} / \mathrm{v}$ acetone medium containing $\mathrm{Cd}(\mathrm{II})$ in a concentration excess of PAR contains the following complexes: $\mathrm{CdL}_{2} \mathrm{H}_{2}$ ( $\lambda_{\max }=507 \mathrm{~nm}$, $\left.\varepsilon_{\text {max }}=1.4 .10^{4} \mathrm{mmol}^{-1} \mathrm{~cm}^{2}, \log \beta_{122}=-2.85 \pm 0.04\right), \mathrm{CdL}_{2} \mathrm{H}^{-}\left(\lambda_{\max }=495 \mathrm{~nm}, \varepsilon_{\max }=\right.$ $\left.=6.25 .10^{4} \mathrm{mmol}^{-1} \mathrm{~cm}^{2}, \log { }^{*} \beta_{123}=-9.58 \pm 0.04\right)$ and $\mathrm{CdL}_{2}^{2-}\left(\lambda_{\max }=495 \mathrm{~nm}, \varepsilon_{\max }=\right.$ $\left.=9.16 \cdot 10^{4} \mathrm{mmol}^{-1} \mathrm{~cm}^{2}, \log * \beta_{124}=-17.33 \pm 0.06\right)$. The basic parameters of the individual complexes were determined by graphical interpretation using slope-intercept transformations and by numerical interpretation using the generalized SQUAD-G program. The statistical parameters of the spectrophotometric method of determining cadmium ions were evaluated from the linear part of the calibration curve using the STAT program.


The group of N-heterocyclic azodyes (PAN, PAR, BrPADAP, etc.) belongs among the most useful spectrophotometric reagents for determining cadmium ions. The molar absorption coefficients of these reagents attain values of $8 \cdot 0-14 \cdot 0.10^{4} \mathrm{mmol}^{-1} \mathrm{~cm}^{2}$, which permits their use for the determination of trace concentrations of $\mathrm{Cd}(\mathrm{II})$ ions in water and in the air.

Although the reaction of $\mathrm{Cd}(\mathrm{II})$ ions with 4 -(2-pyridylazo)resorcine is very sensitive, far less attention has been paid to study of this reaction than to the corresponding reaction with $\mathrm{Zn}(\mathrm{II})$ ions. Sommer and Hniličková described the use of PAR as a metallochromic indicator in complexometric titrations of $\mathrm{Cd}(\mathrm{II})$ and other ions ${ }^{1,2}$ and described formation of complexes of $\mathrm{Cd}(\mathrm{II})$ with PAR with a molar ratio of ML in acid medium and $\mathrm{ML}_{2}$ in neutral and alkaline media ( $\lambda_{\max }=496 \mathrm{~nm}$ ). Iwamoto ${ }^{3}$ gives a composition with a ratio of $\mathrm{M}: \mathrm{L}=1: 1$ for the complex in alkaline media, while Kitano and Ueda ${ }^{4}$ described formation of the $\mathrm{ML}_{2}$ complex with an absorption maximum at 495 nm and molar absorption coefficient of $8 \cdot 4.10^{4} \mathrm{mmol}^{-1}$ . $\mathrm{cm}^{2}$, at pH 10 . Geary and Nickless ${ }^{5}$ gave a similar composition on the basis of potentiometric study of complexation equilibria. The $\mathrm{ML}_{2}$ complex was used ${ }^{4}$ for the spectrophotometric determination of $\mathrm{Cd}(\mathrm{II})$ after separation from interfering elements on strongly basic ion exchanger after masking with $5 \% \mathrm{NaF}$.

Because of the above ambiguities in the data on the composition of the complex and the high sensitivity of the reaction, this work was devoted to study of the com-
plex equilibria of $\mathrm{Cd}(\mathrm{II})$ with PAR in aqueous media and in $10 \% \mathrm{v} / \mathrm{v}$ acetone medium by spectrophotometric methods with graphical and numerical interpretation of the absorbance curves. Optimal conditions were proposed for the spectrophotometric determination of $\mathrm{Cd}(\mathrm{II})$ with PAR and the basic statistical parameters of the method were determined.

## EXPERIMENTAL

## Chemicals and Instruments

The commercial PAR substance (Lachema, Czechoslovakia) was purified by repeated crystallization from methanol. The content of the active component was found by elemental analysis $(91 \cdot 5 \%)$ and by complexometric photometric microtitration with a $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ solution. The stock solutions were prepared by dissolving a weighed amount of the solid substance in 1 ml of dimethylformamide (DMF) and 2 ml of $1 \mathrm{~mol} .1^{-1} \mathrm{NaOH}$ and diluting with distilled water to the required volume.

The standard solution of $0.1897 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}$ in $0.1 \mathrm{~mol} \mathrm{l}^{-1} \mathrm{HNO}_{3}$ was prepared by dissolving $99.999 \%$ metallic cadmium (Metal Research Institute, Panenské Břežany Czechoslovakia) in an excess of $\mathrm{HNO}_{3}$. The Cd(II) ions content was controlled by titration with EDTA using Eriochrome Black T indicator. The working solutions were diluted with $0.1 \mathrm{~mol}^{-1}$ $\mathrm{HNO}_{3}$. The other chemicals were of purity for semiconductors $\left(\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{OH}\right)$ or p.a. $\left(\mathrm{KNO}_{3}\right.$, EDTA). Acetone was distilled twice. The ionic strength of the solutions was maintained constant at $I=0.10$ by a combination of suitable volumes of $1.0 \mathrm{~mol}^{-1} \mathrm{HNO}_{3}$ and $1.0 \mathrm{~mol}^{-1} \mathrm{NaOH}$ (Suprapur, Merck, GFR).

All the spectrophotometric measurements were carried out on a double-beam digital recording Superscan 3 instrument (Varian, Switzerland) controlled on-line by an HP 9815A table-top calculator (Hewlett-Packard, USA) or a single-beam Spectromom 201 instrument (MOM, Hungary). The solution acidity was measured on a pHM 4 d pH meter (Radiometer, Denmark) and an OP-205 instrument (Radelkis, Hungary) with a glass G 202B and saturated calomel K 401 electrode (Radiometer, Denmark). The instruments were calibrated with a set of aqueous NBS buffers ( $\mathrm{pH} 1.68,4.01,7.00$ and 9.18 with a precision of $\pm 0.01$ at $25^{\circ} \mathrm{C}$ ).

The measurement was carried out in volumetric flasks by mixing suitable volumes of solvent (DMF, acetone), reagent, $\mathrm{HNO}_{3}, \mathrm{Cd}(\mathrm{II})$ and NaOH to give the required acidity or in an apparatus for measurements in a closed cycle ${ }^{6}$ with a connecting teflon tube and syringe for transport of the sample between the titration vessel and the flow-through spectrophotometer cuvette.

In solutions with a concentration excess of reagent, a red-purple complex with probable composition $\mathrm{ML}_{2} \mathrm{H}_{2}$ was deposited on the surface of the electrode, on the surface of the titration vessel and on the cuvette. In aqueous solutions and in $10 \%$ acetone medium a colloidal turbidity of the reagent was formed after two hours. Consequently, this measurement was carried out only in $10 \%$ acetone where the individual sets of experimental data were obtained from several connected measurements carried out at intervals of 5-90 minutes.

## RESULTS AND DISCUSSION

The complexing equilibria were studied in solution and the optimal experimental conditions were found for development of a spectrophotometric method of determining $\mathrm{Cd}(\mathrm{II})$ using a combination of graphical and numerical interpretation of the
absorbance curves. The absorbance curves for equimolar solutions and solutions with concentration excess of one of the reactants in dependence on the acidity or component concentrations were treated for $1-2$ wavelengths in the region of maximum absorbance of the studied species by graphical and logarithmic analysis using slope-intercept transformation ${ }^{7}$. The resultant parameter values for the predominant complexes were used as initial data in the numerical interpretation of the complete set of experimental data by the adjusted and extended SQUAD-G program (ref. ${ }^{8,9}$ ). The molar absorption coefficients $\varepsilon_{\text {pqrk }}$ and equilibrium constants ${ }^{*} \beta_{\text {pqr }}$, which best correspond to the experimental data for the selected set of stoichiometric coefficients $p, q$ and $r$ of the complex equilibrium considered,

$$
\begin{equation*}
\mathrm{pM}+\mathrm{q} \mathrm{LH}_{2}-\mathrm{rH} \rightleftharpoons \mathrm{M}_{\mathrm{p}} \mathrm{~L}_{\mathrm{q}} \mathrm{H}_{2 \mathrm{q}-\mathrm{r}}{ }^{*} \beta_{\mathrm{pqr}} \tag{A}
\end{equation*}
$$

were calculated by the minimization process using this program, on the basis of the additivity of the absorbances of all the absorbing species, from the set of absorbance values for the corresponding experimental conditions.

The values of the standard deviations of the determination of the absorbance $\sigma(A)$ and the logarithms of the equilibrium constants $\sigma\left(\log { }^{*} \beta\right)$, which must not be greater than the measuring precision $(\sigma(A) \leqq \Delta A \approx 0.010)$ or must fulfill the condition ${ }^{*} \beta \leqq F_{\sigma} \cdot \sigma(* \beta)$, where $F_{\sigma}$ is the rejection factor, are a criterion of the correctness of the tested model ( $\mathrm{p}, \mathrm{q}, \mathrm{r}$ ) of the absorbing species and the values of their basic parameters $(\varepsilon, * \beta)$. The value $F_{\alpha}=1.5$ was used in this work, which corresponds to $93.3 \%$ probability for the existence of the given species.

The overall number of absorbing species in solution was found by matrix analysis of the absorption spectra by the RANKANAL program (ref. ${ }^{10,11}$ ) and the statistical parameters of the spectrophotometric method of determining $\mathrm{Cd}(\mathrm{II})$ ions with PAR were found by the linear least squares method using the STAT program (ref. ${ }^{12}$ ).

## Acid-Base Equilibria of PAR

The dissociation constant values $\mathrm{p} K_{\mathrm{a1}}=2.76 \pm 0.03$ and $\mathrm{p} K_{2}=5.41 \pm 0.01$ for aqueous medium ( $c_{\mathrm{L}}=2.10^{-5} \mathrm{moll}^{-1}, c_{\text {EDTA }}=5.10^{-4} \mathrm{~mol}^{-1}, 365-555 \mathrm{~nm}$, $\Delta \lambda=10 \mathrm{~nm}, I=0.10$ ) or $\mathrm{p}_{\mathrm{a} 2}=5.54 \pm 0.01$ in $10 \%$ acetone medium ( $c_{\mathrm{L}}=$ $=1.10^{-5} \mathrm{moll}^{-1}, c_{\text {EDTA }}==1.10^{-3} \mathrm{moll}^{-1}, 460-555 \mathrm{~nm}, \Delta \lambda=5 \mathrm{~nm}, I=$ $=0 \cdot 10$ ) were calculated from the absorbance-pH curves for 20 wavelength values using the SQUAD-G program; these values are in good agreement with the literature data.

## Complex Equilibria of $\mathrm{Cd}(\mathrm{II})$ with PAR

The absorption spectra of equimolar solutions and of solutions with various concentration excesses of $\mathrm{Cd}(\mathrm{II})$ ions or of reagent (Fig. 1 and 2 and Table I) indicate
the presence of the acid-base forms of the reagent $\mathrm{LH}_{3}^{+}, \mathrm{LH}_{2}$ and $\mathrm{LH}^{-}$with absorption maxima at 395 and $452 \mathrm{~nm}, 386 \mathrm{~nm}$ or 413 nm , respectively (ref. ${ }^{13}$ ) and at least three complexes of $\mathrm{Cd}(\mathrm{II})$ ions with PAR, whose absorption maxima lie in the range $480-515 \mathrm{~nm}$, in dependence on the experimental conditions.

Table 1
Optical characteristics of the Cd(II)-PAR system. $c_{\mathrm{L}}=1 \cdot 60 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}, I=0 \cdot 10\left(\mathrm{HNO}_{3}+\right.$ $+\mathrm{NaOH}), t=25^{\circ} \mathrm{C}$

| $c_{\mathrm{M}} / c_{\mathrm{L}}$ | pH | $\lambda_{\max }, \mathrm{nm}$ | $\lambda_{\mathrm{i} . \mathrm{p}, \mathrm{nm}}$ |
| :---: | :---: | :--- | :--- |
| $2400^{a}$ | $<4$ | $395,452^{b}, 500$ | $470-480$ |
|  | $>4$ | $413^{b}, 495,515$ | 436 |
| 80 | $<5$ | $395^{b}, 452^{b}, 500$ | $450-480,395$ |
|  | $>5$ | $413^{b}, 495,515$ | $329,436,551$ |
| 1 | $\sim 8$ | 595,515 |  |
| $1 / 2$ | $>6$ | $413^{b}, 495,515$ | 330,440 |
| $1 / 5^{c}, 1 / 10^{d}$ | $>6$ | $413^{b}, 495,515$ | $329,440,550$ |
| $1 / 10^{d}$ | $>7$ | $413^{b}, 495,515$ | $329,440,550$ |

${ }^{a} c_{\mathrm{L}}=2 \cdot 00 \cdot 10^{-5} \mathrm{~mol}^{-1} ;{ }^{b}$ absorption maxima of the acid-base forms of the reagent, $\mathrm{LH}_{3}^{+}$, $\mathrm{LH}_{2}$ and $\mathrm{LH}^{-} ;{ }^{c} c_{\mathrm{L}}=4.00 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1} ;{ }^{d} c_{\mathrm{L}}=8 \cdot 00 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}$


Fig. 1
Absorption spectra of a PAR solution with a concentration excess of cadmium ions. $c_{\mathrm{M}}=$ $=1 \cdot 28 \cdot 10^{-3} \mathrm{~mol}^{-1}, c_{\mathrm{L}}=1 \cdot 6 \cdot 10^{-5} \mathrm{~mol} 1^{-1}, c_{\mathrm{M}} / c_{\mathrm{L}}=80, I=0 \cdot 10\left(\mathrm{HNO}_{3}+\mathrm{KOH}\right), l=$ $10 \mathrm{~mm}, t=25^{\circ} \mathrm{C}$. Curve: $1 \mathrm{pH} 3.97 ; 24.35 ; 34.80 ; 45.11 ; 55.75 ; 66.12 ; 76.45 ; 86.72 ; 96.95$; 107.33; $117.45 ; 127.86$

The absorbance- pH curves of aqueous solutions of PAR with a concentration excess of cadmium ions, measured for 20 discrete wavelengths in the interval 365 to 555 nm in steps of $\Delta \lambda=10 \mathrm{~nm}$ (for the experimental conditions, see Fig. 3) and for


Fig. 2
The absorption spectra of a solution of $\mathrm{Cd}(\mathrm{II})$ ions with a concentration excess of $\operatorname{PAR} c_{\mathrm{M}}=$ $=8 \cdot 00 \cdot 10^{-6} \mathrm{~mol} \mathrm{l}^{-1}, c_{\mathrm{L}}=1 \cdot 6 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}, c_{\mathrm{L}} / c_{\mathrm{M}}=2, I=0 \cdot 10\left(\mathrm{HNO}_{3}++\mathrm{KOH}\right), l=$ $=10 \mathrm{~mm}, t=25^{\circ} \mathrm{C}$. Curve: $1 \mathrm{pH} 6.37 ; 27.11,37.48,47.98,58 \cdot 35,68.57,79.27,810.04$


Fig. 3
The absorbance-pH curves of a PAR solution with a concentration excess of cadmium ions. $c_{\mathrm{L}}=2 \cdot 00 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}, I=0 \cdot 10(\mathrm{HNO}+\mathrm{KOH}), 495 \mathrm{~nm}, c_{\mathrm{M}}\left(\mathrm{mol} \mathrm{l}^{-1}\right)$ and $c_{\mathrm{M}} / c_{\mathrm{L}}$ : Curve 1 $4 \cdot 8 \cdot 10^{-4}$ and $24 ; 24 \cdot 8 \cdot 10^{-3}$ and $240 ; 34 \cdot 8 \cdot 10^{-2}$ and $2400 ; 40$
$\mathrm{pH} 1.25-8.00$ exhibit two formation regions at $\mathrm{pH} 2 \cdot 5-4.7$ and $5 \cdot 0-8.0$. Matrix analysis of the set of experimental data using the RANKANAL program confirms the simultaneous existence of four absorbing species in the whole studied pH interval. Graphical interpretation of both formation parts of the absorbance curves for 485, 495 and 515 nm using slope-intercept transformation confirms formation of the protonated CdLH complex from free components in the pH interval $2 \cdot 5-4.7$ and deprotonation to the CdL complex in the second formation part of the absorbance- pH curve in the sense of the equilibria (charges are omitted)

$$
\begin{align*}
\mathrm{Cd}+\mathrm{LH}_{2} & \rightleftharpoons \mathrm{CdLH}+\mathrm{H}, \quad{ }^{*} \beta_{111}  \tag{A}\\
\mathrm{CdLH} & \rightleftharpoons \mathrm{CdL}+\mathrm{H}, \quad K_{\mathrm{a} 111} \tag{B}
\end{align*}
$$

## Table II

Values of the logarithms of the equilibrium constants of the reaction $\mathrm{pCd}+\mathrm{q} \mathrm{LH}_{2}-\mathrm{rH} \underset{ }{\rightleftarrows}$ $\rightleftarrows \mathrm{Cd}_{\mathrm{p}} \mathrm{L}_{\mathrm{q}} \mathrm{H}_{2 q-\mathrm{r}}$ obtained by graphical interpretation and using the SQUAD-G program from the absorbance-pH curves $A=f(\mathrm{pH}) \cdot I=0 \cdot 10\left(\mathrm{HNO}_{3}+\mathrm{KOH}\right), l=10 \mathrm{~mm}, t=25^{\circ} \mathrm{C}$
Assumed species $c_{\mathrm{M}} / c_{\mathrm{L}} \quad-\log * \beta_{\mathrm{pqr}} \quad \sigma(\mathrm{A})^{a} \quad U .10^{2 b}$

| $\mathrm{LH}_{3}, \mathrm{LH}_{2}, \mathrm{LH}$ | $2400^{\circ}$ | $1 \cdot 4^{\text {f }} ; 1 \cdot 8^{9}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CdLH, |  | $1.666 \pm 0.044 ; 1.4^{f} ; 1.8^{g}$ | 0.012 | $5 \cdot 403$ |
| CdL |  | $8 \cdot 246 \pm 0.051 ; 8.55^{g}$ |  |  |
| $\mathrm{LH}_{2}, \mathrm{LH}$, | $1 / 10^{d}, 1 / 21^{e}$ |  |  |  |
| $\mathrm{CdL}_{2} \mathrm{H}_{2}$, |  | $2.812 \pm 0.049^{d}, \quad 2.854 \pm 0.036^{e}$ |  |  |
| $\mathrm{CdL}_{2} \mathrm{H}$, |  | $9.414 \pm 0.052^{d}, \quad 9.584 \pm 0.043^{e}$ | 0.004, 0.004 | 1.017, $0.786^{\circ}$ |
| $\mathrm{CdL}_{2}$ |  | $17.340 \pm 0.066^{d}, 17.330 \pm 0.065^{e}$ |  |  |

$\begin{aligned} & \mathrm{LH}_{2}, \mathrm{LH}, \\ & \mathrm{CdL}, \mathrm{CdL}_{2}\end{aligned} \quad 1 / 10^{d}, 1 / 21^{e} \quad$ very high values of $\varepsilon_{\mathrm{pq} \mathrm{rk}}$ for complex CdL

[^0]The best agreement of the experimental data and theoretically calculated $A=f(\mathrm{pH})$ curves in numerical interpretation of the absorbance-pH curves for a concentration excess of cadmium ions of $c_{\mathrm{M}} / c_{\mathrm{L}}=2400$ using the SQUAD-G program was found

## Table III

Molar absorption coefficient values for the $\mathrm{CdLH}, \mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}_{2}, \mathrm{CdL}_{2} \mathrm{H}$ and $\mathrm{CdL}_{2}$ complexes calculated by the SQUAD-G program. For experimental conditions, see Table II

| $\lambda, \mathrm{nm}$ | $\varepsilon_{\text {pqrk }}, \mathrm{mmol}^{-1} \mathrm{~cm}^{2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{CdLH}^{\text {a }}$ | $\mathrm{CdL}^{a}$ | $\mathrm{CdL}_{2} \mathrm{H}_{2}{ }^{\text {b }}$ | $\mathrm{CdL}_{2} \mathrm{H}^{\text {b }}$ | $\mathrm{CdL}_{2}{ }^{\text {b }}$ |
| 365 | $9086 \pm 314$ | $4494 \pm 539$ |  |  |  |
| 375 | $11890 \pm 323$ | $5113 \pm 555$ |  |  |  |
| 385 | $14750 \pm 275$ | $5916 \pm 473$ |  |  |  |
| 395 | $16910 \pm 172$ | $6795 \pm 295$ |  |  |  |
| 405 | $17750 \pm 82$ | $7533 \pm 142$ |  |  |  |
| 415 | $17140 \pm 114$ | $8268 \pm 196$ |  |  |  |
| 425 | $15360 \pm 186$ | $9289 \pm 319$ |  |  |  |
| 435 | $13090 \pm 216$ | $10910 \pm 371$ |  |  |  |
| 445 | $11200 \pm 199$ | $13710 \pm 342$ |  |  |  |
| 455 | $10260 \pm 161$ | $17480 \pm 276$ |  |  |  |
| 460 |  |  | $12560 \pm 463$ | $37100 \pm 639$ | $58080 \pm 379$ |
| 465 | $10090 \pm 113$ | $21980 \pm 193$ | $11490 \pm 425$ | $41940 \pm 588$ | $64460 \pm 349$ |
| 470 |  |  | $10990 \pm 385$ | $46600 \pm 532$ | $70650 \pm 316$ |
| 475 | $10290 \pm 134$ | $26290 \pm 230$ | $11060 \pm 345$ | $50930 \pm 477$ | $76660 \pm 283$ |
| 480 |  |  | $11380 \pm 298$ | $55040 \pm 412$ | $82430 \pm 244$ |
| 485 | $10460 \pm 215$ | $30420 \pm 369$ | $11800 \pm 267$ | $58720 \pm 369$ | $87590 \pm 219$ |
| 490 |  |  | $12300 \pm 265$ | $61350 \pm 367$ | $90880 \pm 218$ |
| 495 | $10400 \pm 248$ | $31990 \pm 426$ | $12990 \pm 239$ | $62280 \pm 331$ | $91610 \pm 196$ |
| 500 |  |  | $13400 \pm 225$ | $61510 \pm 311$ | $89830 \pm 184$ |
| 505 | $9933 \pm 246$ | $30840 \pm 423$ | $13780 \pm 206$ | $59870 \pm 285$ | $86930 \pm 169$ |
| 510 |  |  | $13510 \pm 225$ | $57570 \pm 312$ | $83100 \pm 185$ |
| 515 | $9099 \pm 216$ | $28630 \pm 371$ | $13370 \pm 216$ | $55000 \pm 299$ | $79340 \pm 177$ |
| 520 |  |  | $12910 \pm 203$ | $52150 \pm 281$ | $75070 \pm 167$ |
| 525 | $7841 \pm 176$ | $23520 \pm 303$ | $12040 \pm 193$ | $46750 \pm 267$ | $67290 \pm 158$ |
| 530 |  |  | $10900 \pm 148$ | $38150 \pm 205$ | $54410 \pm 122$ |
| 535 | $6329 \pm 141$ | $13680 \pm 241$ | $9884 \pm 131$ | $28160 \pm 182$ | $39370 \pm 108$ |
| 540 |  |  | $8659 \pm 109$ | $19410 \pm 151$ | $26050 \pm 89$ |
| 545 | $4734 \pm 104$ | $6688 \pm 180$ | $7444 \pm 98$ | $13030 \pm 136$ | $16330 \pm 80$ |
| 550 |  |  | $6198 \pm 87$ | $8757 \pm 120$ | $9985 \pm 71$ |
| 555 | $3267 \pm 81$ | $3480 \pm 139$ | $5103 \pm 77$ | $5920 \pm 106$ | $6177 \pm 63$ |

${ }^{a}$ Results for a concentration excess of $\mathrm{Cd}(\mathrm{II})$ ions, $c_{\mathrm{L}}=2 \cdot 00 \cdot 10^{-5} \mathrm{~mol} 1^{-1}, c_{\mathrm{M}}=4 \cdot 848 \cdot 10^{-2}$ $\mathrm{mol1} \mathrm{I}^{-1}, \mathrm{pH} 2.73-7 \cdot 74 ;{ }^{b}$ concentration excess of PAR, $c_{\mathrm{L}}=2 \cdot 00.10^{-4} \mathrm{~mol}^{-1}, c_{\mathrm{M}}=9.484$. $10^{-6} \mathrm{moll}^{-1}$.
for the model of reaction equilibrium with formation of the CdLH and CdL complexes with simultaneous consideration of the acid-base transitions of the reagent, $\mathrm{LH}_{3} / \mathrm{LH}_{2}$ and $\mathrm{LH}_{2} / \mathrm{LH}$, in the sence of the equations (charges are omitted)

$$
\begin{align*}
\mathrm{LH}_{2}+\mathrm{H} & \rightleftharpoons \mathrm{LH}_{3}, K_{\mathrm{a} 1}  \tag{C}\\
\mathrm{LH}_{2}-\mathrm{H} & \rightleftharpoons \mathrm{LH}, K_{\mathrm{a} 2}  \tag{D}\\
\mathrm{Cd}+\mathrm{LH}_{2}-\mathrm{H} & \rightleftharpoons \mathrm{CdLH},{ }^{*} \beta_{111}  \tag{E}\\
\mathrm{Cd}+\mathrm{LH}_{2}-2 \mathrm{H} & \rightleftharpoons \mathrm{CdL},{ }^{*} \beta_{112} . \tag{F}
\end{align*}
$$

The dissociation constants of the first two reactions were left unchanged during the calculation and only the equilibrium constants of reactions $(E)$ and $(F)$ changed together with the molar absorption coefficients of the CdLH and CdL complexes. The $\log * \beta_{111}$ and $\log * \beta_{112}$ values obtained from graphical interpretation of the curves $\left(\log * \beta_{111}=-4.82, \log * \beta_{112}=-9 \cdot 50\right)$ were used as initial data for the actual


Fig. 4
The absorbance-pH curves of a solution of $\mathrm{Cd}(\mathrm{II})$ ions with various concentration excesses of PAR. $c_{\mathrm{M}}=9 \cdot 484 \cdot 10^{-6} \mathrm{~mol} \mathrm{l}^{-1}, I=0 \cdot 10\left(\mathrm{HNO}_{3}+\mathrm{KOH}\right), 495 \mathrm{~nm}$. Curves $1-3, A=f(\mathrm{pH})$, curves $4-7, \Delta A=A-A_{\mathrm{OL}}=f(\mathrm{pH}) . c_{\mathrm{L}}\left(\mathrm{mol} \mathrm{l}^{-1}\right)$ and $c_{\mathrm{L}} / c_{\mathrm{M}}$ : Curve $12 \cdot 0 \cdot 10^{-4}$ and 21 ; $21 \cdot 0.10^{-4}$ and $10 \cdot 5 ; 31 \cdot 0.10^{-4}, c_{\mathrm{M}}=0 ; 42 \cdot 0.10^{-4}$ and $21 \cdot 0 ; 51 \cdot 0.10^{-4}$ and $10 \cdot 5$; $61 \cdot 0.10^{-4}$ and $10 \cdot 58 ; 75 \cdot 00 \cdot 10^{-5}$ and $5 \cdot 29$
calculation. In consideration of further complexing equilibria $\left(\mathrm{Cd}_{2} \mathrm{~L}, \mathrm{CdLH}, \mathrm{CdL}\right)$, the calculation did not converge which, together with the small value of the standard deviation of the absorbance $\sigma(A)$, confirms the correctness of the above conclusions. A survey of the values of the molar absorption coefficients and the logarithms of the equilibrium constants of the reactions, $(A),(B),(E)$ and $(F)$, obtained by graphical and numerical interpretation of the absorbance curves, is given in Tables II and III.

The absorbance-pH curves of $\mathrm{Cd}(\mathrm{II})$ solutions with concentration excess of PAR for 20 discrete wavelength values in the interval $460-555 \mathrm{~nm}$ in steps of $\lambda=5 \mathrm{~nm}$, measured in $10 \%$ (v/v) acetone medium (for experimental conditions, see Fig. 4) in the pH interval $3 \cdot 9-10 \cdot 1$ exhibit three insufficiently separated formation branches at $\mathrm{pH} 5-7,7-8$ and $8-9$ or $4-6,6-7$ and $7-9$.

Graphical interpretation of the curves for wavelengths of 495 and 515 nm in the pH interval $5 \cdot 2-9 \cdot 5$, assuming formation of the $\mathrm{CdL}_{2} \mathrm{H}_{\mathrm{x}}$ complexes from the free components and their interconversion, confirms the formation of a mixture of variously protonated complexes with molar $\mathrm{M}: \mathrm{L}=1: 2$. At $\mathrm{pH} 5 \cdot 75$ the $\mathrm{CdL}_{2} \mathrm{H}_{2}$ complex predominates in solution $\left(\varepsilon_{\max }=26 \cdot 500, \log * \beta_{122}=-2 \cdot 5\right)$, at $\mathrm{pH} \sim 6$ deprotonation of the $\mathrm{CdL}_{2} \mathrm{H}_{2}$ complex to the $\mathrm{CdL}_{2} \mathrm{H}$ complex ( $\varepsilon_{\text {nax }}=70900$ ) begins to occur and, finally, at $\mathrm{pH} 8-9.5$ a further proton is dissociated to give


Fig. 5
The absorption spectra of the individual $\mathrm{CdLH}^{+}, \mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}_{2}, \mathrm{CdL}_{2} \mathrm{H}^{-}$and $\mathrm{CdL}_{2}^{2-}$ complexes calculated by the SQUAD-G program. Curve, complex: $1 \mathrm{CdLH}^{+}, 2 \mathrm{CdL}, 3 \mathrm{CdL}_{2} \mathrm{H}_{2}$, $4 \mathrm{CdL}_{2} \mathrm{H}^{-}, 5 \mathrm{CdL}_{2}^{2-}$
the $\mathrm{CdL}_{2}$ complex $\left(\varepsilon_{\max }=87900\right)$ according to the equilibria (charges are omitted)

$$
\begin{align*}
\mathrm{Cd}+2 \mathrm{LH}_{2} & \rightleftharpoons \mathrm{CdL}_{2} \mathrm{H}_{2}+2 \mathrm{H} * \beta_{122}  \tag{G}\\
\mathrm{CdL}_{2} \mathrm{H}_{2} & =\mathrm{CdL}_{2} \mathrm{H}+\mathrm{H} K_{\mathrm{a} 121}  \tag{H}\\
\mathrm{CdL}_{2} \mathrm{H} & \rightleftharpoons \mathrm{CdL}_{2}+\mathrm{H} K_{\mathrm{a} 120} \tag{I}
\end{align*}
$$

Because of the insufficient separation of the individual formation part of the curves, the equilibrium constant values change considerably with a change in the concentration excess of PAR; nevertheless, they were used as initial values in the numerical interpretation of the curves by the SQUAD-G program.

Numerical interpretation of the absorbance-pH curves for $c_{\mathrm{L}} / c_{\mathrm{M}}=10.5$ and 21.0 for the whole set of experimental data confirm the existence of the $\mathrm{CdL}_{2} \mathrm{H}_{2}$, $\mathrm{CdL}_{2} \mathrm{H}$ and $\mathrm{CdL}_{2}$ complexes in addition to the acid-base forms of the reagent $\mathrm{LH}_{2}$ and LH. In consideration of further complexes ( $\mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}_{3}, \mathrm{CdLH}$, etc.), the calculation for the curves with a concentration excess of PAR does not converge or the values of the molar absorption coefficients of some complexes are very high and mostly the required value of the standard deviation for the determination of the absorbance and the logarithm of the equilibrium constants are not attained (Table II). A survey of the values of the basic parameters for the $\mathrm{CdL}_{2} \mathrm{H}_{2}, \mathrm{CdL}_{2} \mathrm{H}$ and $\mathrm{Cd}_{2}$ complexes and the equilibrium constants of reaction $(G)$ and of the reactions (charges are omitted)

$$
\begin{align*}
& \mathrm{Cd}+2 \mathrm{LH}_{2}-3 \mathrm{H} \rightleftharpoons \mathrm{CdL}_{2} \mathrm{H} \quad{ }^{*} \beta_{123}  \tag{J}\\
& \mathrm{Cd}+2 \mathrm{LH}_{2}-4 \mathrm{H} \rightleftharpoons \mathrm{CdL}_{2} \tag{K}
\end{align*}{ }^{*} \beta_{124}
$$

together with the $\sigma(A)$ and $\sigma\left(\log * \beta_{\mathrm{pqr}}\right)$ values, are given in Tables II and III.
The stoichiometric compositions of the complexes were confirmed by measuring the dependence of the absorbance on the concentration of the components for wavelengths of $480,495,510$ and 525 nm at selected pH values. The $A=f\left(c_{\mathrm{M}}\right)$ curve at $\mathrm{pH} 4 \cdot 0,5 \cdot 0$ and $7 \cdot 0, c_{\mathrm{L}}=1 \cdot 89 \cdot 10^{-5} \mathrm{~mol} \mathrm{l}^{-1}, c_{\mathrm{M}}=(0 \cdot 0935-3 \cdot 78) \cdot 10^{-3} \mathrm{~mol} \mathrm{l}^{-1}$, evaluated by the tangent method, indicates bonding of a single $\mathrm{Cd}(\mathrm{II})$ ion in the whole pH interval. The $A=f\left(c_{\mathrm{L}}\right)$ curves for $c_{\mathrm{M}}=9 \cdot 45.10^{-6} \mathrm{~mol} \mathrm{l}^{-1}$ and $c_{\mathrm{L}}=(0 \cdot 10$ to $1 \cdot 53) .10^{-4} \mathrm{~mol} \mathrm{l}^{-1}$ confirm the existence of a complex with molar ratio $\mathrm{M}: \mathrm{L}=$ $=1: 2$ at pH 7.5 and 8.5 and the existence of a mixture of complexes with molar ratios $\mathrm{M}: \mathrm{L}$ of $1: 1$ and $1: 2$ at $\mathrm{pH} 5 \cdot 25$.

The continuous variation curves $\Delta A=f\left(x_{\mathrm{L}}\right)$ also confirm the existence of a complex with molar ratio $\mathrm{M}: \mathrm{L}=1: 2$ in the whole range of experimental conditions
$\left(c_{\mathrm{O}}=c_{\mathrm{M}}+c_{\mathrm{L}}=1 \cdot 89.10^{-5} \mathrm{moll}^{-1}, 480,495,510\right.$ and $525 \mathrm{~nm}, \mathrm{pH} 6.0,7 \cdot 5$ and $8 \cdot 5$ ), as the maximum on the curve lies at $x_{\mathrm{L}}=0.66$. The basic parameters differ considerably for the individual pH values, indicating the presence of a mixture of variously protonated complexes, $\mathrm{CdL}_{2} \mathrm{H}_{\mathrm{x}}(x=0-2)$

The distribution diagrams $\delta=\left[\mathrm{M}_{\mathrm{p}} \mathrm{L}_{\mathrm{q}} \mathrm{H}_{2 \mathrm{q}-\mathrm{r}}\right] / c_{\mathrm{M}}=\mathrm{f}(\mathrm{pH})$ or $\delta=\left[\mathrm{M}_{\mathrm{p}} \mathrm{L}_{\mathrm{q}} \mathrm{H}_{2 \mathrm{q}-\mathrm{r}}\right] /$ $/ c_{\mathrm{L}}=f(\mathrm{pH})$ for solutions with a concentration excess of $\mathrm{Cd}(\mathrm{II})$ ions (curves 3 and 4 in Fig. 6) confirm quantitative formation of the MLH and ML complexes at $\mathrm{pH} 4 \cdot 5-5 \cdot 0$ and $\mathrm{pH}>8$, respectively. The $\mathrm{ML}_{2} \mathrm{H}_{2}, \mathrm{ML}_{2} \mathrm{H}$ and $\mathrm{ML}_{2}$ complexes are formed stepwise in solutions with a concentration excess of reagent (Fig. 6, curves 5-8). The maximal values of the distribution coefficients $\delta=0.65$ and $\delta=$ $=0.55$, respectively, of the first two complexes are attained at pH 6 and pH 7.25 , respectively. The $\mathrm{ML}_{2}$ complex is formed quantitatively at $\mathrm{pH}>9.2$ and at $\mathrm{pH}>10$ the acid-base equilibrium $\mathrm{LH} \rightleftarrows \mathrm{L}$ of the reagent alone begins to become important $\left(\mathrm{p} K_{\mathrm{a} 3}=11 \cdot 98\right)$. This pH interval is also most suitable for development of a spectrophotometric method for the determination of $\mathrm{Cd}(\mathrm{II})$ with PAR.

It follows from study of the complex equilibria of $\mathrm{Cd}(\mathrm{II})$ ions with PAR that the equilibrium scheme corresponds completely to the reaction scheme found by graphical methods and numerical treatment of the absorbance curves by the PRCEK ${ }^{13}$ program for $\mathrm{Zn}(\mathrm{II})$ solutions with PAR. The complexes of $\mathrm{Zn}(\mathrm{II})$ with PAR are roughly one order of magnitude more stable than the corresponding complexes of $\mathrm{Cd}(\mathrm{II})$ and values of the molar absorption coefficients of the $\mathrm{ZnL}_{2} \mathrm{H}_{2}, \mathrm{ZnL}_{2} \mathrm{H}$ and $\mathrm{ZnL}_{2}$ complexes $\left(\varepsilon_{122}=17000 \mathrm{mmol}^{-1} \mathrm{~cm}^{2}, \varepsilon_{123}=67000 \mathrm{mmol}^{-1} \mathrm{~cm}^{2}\right.$,


Fig. 6
Distribution curves for components of the reaction mixture of $\mathrm{Cd}(\mathbf{I I})+\mathrm{PAR}$ in solutions with a concentration excess of cadmium ions (curves $1-4$ ) or of PAR (curves $5-8$ ). Curves 1-4: $c_{\mathrm{M}}=4 \cdot 8 \cdot 10^{-2} \mathrm{~mol} \mathrm{l}^{-1}, c_{\mathrm{L}}=$ $=2 \cdot 0.10^{-5} \mathrm{moll}^{-1}, c_{\mathrm{M}} / c_{\mathrm{L}}=2400$; Curves $5-8: c_{\mathrm{M}}=9 \cdot 484 \cdot 10^{-6} \mathrm{moll}^{-1}, c_{\mathrm{L}}=$ $=2 \cdot 0 \cdot 10^{-4} \mathrm{moll}^{-1}, c_{\mathrm{L}} / c_{\mathrm{M}}=21 \cdot 0 . \delta:$ Curve $1\left[\mathrm{LH}_{2}\right] / c_{\mathrm{L}}, 2[\mathrm{LH}] / c_{\mathrm{L}}, 3[\mathrm{MLH}] / c_{\mathrm{L}}$, $4[\mathrm{ML}] / c_{\mathrm{L}}, 5[\mathrm{M}] / c_{\mathrm{M}}, 6\left[\mathrm{ML}_{2} \mathrm{H}_{2}\right] / c_{\mathrm{M}}, 7$ $\left[\mathrm{ML}_{2} \mathrm{H}\right] / c_{\mathrm{M}}, 8\left[\mathrm{ML}_{2}\right] / c_{\mathrm{M}}$
$\varepsilon_{124}=93000 \mathrm{mmol}^{-1} \mathrm{~cm}^{2}$ at 495 nm ) are roughly $2000-5000 \mathrm{mmol}^{-1} \mathrm{~cm}^{2}$ higher than for the corresponding $\mathrm{CdL}_{2} \mathrm{H}_{2}, \mathrm{CdL}_{2} \mathrm{H}$ and $\mathrm{CdL}_{2}$ complexes (Tables III and IV).

## Table IV

Characteristics of the spectrophotometric method of determining $\mathrm{Cd}(\mathrm{II})$ with PAR reagent. $c_{\mathrm{L}}=1 \cdot 00.10^{-4} \mathrm{moll}^{-1}, c_{\mathrm{M}}=(0.378-2 \cdot 26) .10^{-5} \mathrm{moll}^{-1}, 0.10 \mathrm{moll}^{-1}$ borate buffer, pH $9 \cdot 22, l=10 \mathrm{~mm}, t=25^{\circ} \mathrm{C}$

| Quantity | $\lambda, \mathrm{nm}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 480 | 496 | 510 | 525 |
| $\varepsilon \pm \mathrm{d}(\varepsilon)^{a}$ | $70460 \pm 662$ | $81650 \pm 862$ | $75650 \pm 785$ | $59820 \pm 574$ |
| $q^{\text {b }}$ | 0.9993 | 0.9993 | 0.9993 | 0.9994 |
| $A_{b 1}{ }^{\text {c }}$ | 0.450 | 0.248 | 0.156 | 0.097 |
| $s_{x y}{ }_{4}^{d}$ | 0.0184 | 0.0194 | 0.0177 | 0.0130 |
| $10^{3} \cdot U^{e}$ | 2.04 | $2 \cdot 26$ | 1.89 | 1.01 |
| $S_{\text {I }} \cdot 10^{2 S}$ | 1.59 | 1.37 | 1.49 | 1.87 |

${ }^{a}$ Molar absorption coefficient and its standard deviation, $\mathrm{mmol}^{-1} \mathrm{~cm}^{2}$. ${ }^{b}$ correlation coefficient; ${ }^{c}$ blank absorbance; ${ }^{d}$ estimated standard deviation for the scatter around the regression straight line, $s_{x y}=(U /(n-2))^{1 / 2}$ for $n=8 ;{ }^{e}$ sum of the squares of the deviations $U=\sum\left(A_{\text {exp }}-\right.$ $\left.-A_{\text {calc }}\right)^{2} ;{ }^{f}$ Sandell's sensitivity index for $A=0.010, S_{\mathrm{I}}=10 . M_{\mathrm{r}} / \varepsilon$.

## Table V

The effect of some ions on the determination of $\mathrm{Cd}(\mathrm{II}) \cdot c_{\mathrm{L}}=1 \cdot 00 \cdot 10^{-4} \mathrm{~mol} \mathrm{l}^{-1}, c_{\mathrm{Cd}}=4 \cdot 52$. $.10^{-6} \mathrm{~mol}^{-1}, 495 \mathrm{~nm}, \mathrm{pH} 9 \cdot 22,0 \cdot 10 \mathrm{~mol}^{-1}$ borate buffer, $I=10 \mathrm{~mm}, t=25^{\circ} \mathrm{C}$

| Ion | $\Delta, \%$ | Ion | $\Delta, \%^{a}$ |
| :---: | :---: | :--- | :--- |
| $\mathrm{Co}(\mathrm{II})$ | $31 \cdot 7 ; 7 \cdot 5^{b}$ | $\mathrm{NO}_{3}^{-}$ | $1 \cdot 5^{c}$ |
| $\mathrm{Cu}(\mathrm{II})$ | $64 \cdot 8 ; 17 \cdot 1^{b}$ | $\mathrm{ClO}_{4}^{-}$ | $1 \cdot 5^{c}$ |
| $\mathrm{Zn}(\mathrm{II})$ | $71 \cdot 5 ; 19 \cdot 6^{b}$ | $\mathrm{Cl}^{-}$ | $1 \cdot 5^{d}$ |
| $\mathrm{Ni}(\mathrm{II})$ | $51 \cdot 6 ; 14 \cdot 0^{b}$ | $\mathrm{SO}_{4}^{2-}$ | $1 \cdot 5^{d, e}$ |
|  |  | $\mathrm{~J}^{-}$ | $1 \cdot 5^{e}$ |

${ }^{a}$ Relative error of determining the absorbance in $\%, 100\left(A_{x}-A\right) / A ;{ }^{b}$ data for a concentration ratio of $c_{\mathrm{Cd}} / c_{\mathrm{X}}=1.0$ or $1 / 4 ;{ }^{c}$ data for $c_{\mathrm{X}}=0.5 \mathrm{~mol} 1^{-1}, c_{\mathrm{X}} / c_{\mathrm{Cd}}=1 \cdot 11.10^{5} ;{ }^{d} c_{\mathrm{X}}=1.0$ mol $1^{-1}, c_{\mathrm{X}} / c_{\mathrm{Cd}}=2 \cdot 22.10^{5} ;{ }^{e} c_{\mathrm{X}}=0.1 \mathrm{~mol} \mathrm{I}^{-1}, c_{\mathrm{X}} / c_{\mathrm{Cd}}=2 \cdot 22.10^{4}, c_{\mathrm{X}}$ is the concentration of the interfering ion in $\mathrm{mol} \mathrm{I}^{-1} ; A_{\mathrm{X}}$ is the absorbance of a solution of $c_{\mathrm{Cd}}=4.52 \cdot 10^{-6} \mathrm{~mol}^{-1}$ for the concentration ratio $c_{\mathrm{M}} / c_{\mathrm{X}}$ given in notes $b-e ; A$ is the absorbance of a solution with $c_{\mathrm{Cd}}=4 \cdot 52 \cdot 10^{-6} \mathrm{moll}^{-1}$.

The Spectrophotometric Method for the Determination of $\mathrm{Cd}(\mathrm{II})$ with PAR
Detailed study of the complex equilibria of cadmium ions with PAR has shown that the only complex suitable for development of a determination method is the $\mathrm{CdL}_{2}$ complex $\left(\lambda_{\text {max }}=495 \mathrm{~nm}, \varepsilon_{\text {max }}=91600 \mathrm{mmol}^{-1} \mathrm{~cm}^{2}\right)$, which is formed quantitatively in solutions with a concentration excess of $\operatorname{PAR}\left(c_{\mathrm{M}}=9.45 .10^{-6} \mathrm{moll}^{-1}, c_{\mathrm{L}} / c_{\mathrm{M}}=\right.$ $=5.29,10.5$ and 21.0 ) at pH 9 . At higher pH values, $\mathrm{pH}>10$, the $\mathrm{LH} / \mathrm{L}$ acid-base equilibrium begins to become important and the strongly absorbing $L$ acid-base form is present $\left(\lambda_{\max }=488 \mathrm{~nm}, \varepsilon_{\max }=2 \cdot 4 \cdot 10^{4} \mathrm{mmol}^{-1} \mathrm{~cm}^{2}\right)$. The optimum acidity conditions lie in the pH interval $\mathrm{pH} 9.0-9.7$.

For acidity adjustment, $0.02-0.5 \mathrm{~mol}^{-1}$ borate solutions ( pH 9.22 ) and ammonia buffer ( pH 9.50 ) were tested. The relative error when using $0.05 \mathrm{~mol}^{-1}$ ammonia buffer or $0.10 \mathrm{~mol}^{-1}$ borate buffer, $100\left(A_{\mathrm{T}}-A\right) / A$ was approximately $1.5 \%$, so that further measurements were carried out using $0 \cdot 10 \mathrm{~mol}^{-1}$ borate buffer with pH 9.22 .

It follows from the dependence of the absorbance on the PAR concentration $\Delta A=f\left(c_{\mathrm{L}}\right)$ under the above experimental conditions ( $c_{\mathrm{M}}=9 \cdot 45 \cdot 10^{-6} \mathrm{~mol}^{-1}$, $\left.c_{\mathrm{L}}=(0.0503-1.01) .10^{-4} \mathrm{~mol}^{-1}, \mathrm{pH} 9.22\right)$ that a concentration excess of PAR of $c_{L} / c_{M} \geqq 4$ is sufficient for quantitative formation of the $\mathrm{CdL}_{2}$ complex. A final concentration of $c_{\mathrm{L}}=1.10^{-4} \mathrm{moll}^{-1}$ was chosen for the actual determination ensuring sufficient concentration excess of PAR in the whole range of the calibration curve. The calibration curve is linear in the cadmium ion concentration range $c_{\mathrm{M}}=$ $=(0 \cdot 378-2 \cdot 26) \cdot 10^{-5} \mathrm{~mol} 1^{-1}$. The basic statistical parameters of the calibration curve for $480,495,510$ and 525 nm indicate (Table IV) that the determination method is most sensitive and precise at 495 nm .

The effect of some selected cations and anions is given in Table V. Among cations, $\mathrm{Cu}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ strongly interfere, while anions do not interfere in quite high concentrations, which is advantageous for separation of cadmium ions as the halogen complexes.

## REFERENCES

1. Sommer L., Hnilicková M.: Folia Fac. Sci. Nat. Univ. J. E. Purkyně Brno, Chemia 2, 9, 1 (1968).
2. Sommer L., Hniličková M.: This Journal 26, 2189 (1961).
3. Iwamoto T.: Bull. Chem. Soc. Jap. 34, 605 (1961).
4. Kitano M., Ueda L.: Nippon Kagaku Zasshi 91, 760 (1970); Chem. Abstr. 21, 4011 (1971).
5. Geary W. J., Nickless G., Pollard F. H.: Anal. Chim. Acta 26, 575 (1962).
6. Havel J.: Chem. Listy 62, 1250 (1968).
7. Sommer L., Kubán̆ V., Havel J.: Folia Fac. Sci. Nat. J. E. Purkyně Univ. Brno, Chemia 11, 7, 1 (1970).
8. Leggett D. J., McBryde W. A.: Anal. Chem. 47, 1065 (1979).
9. Jančář L., Havel J.: Scr. Fac. Sci. Nat. Univ. Brno, in press.
10. Wallace J.: J. Phys. Chem. 64, 899 (1960).
11. Wallace J.: J. Phys. Chem. 68, 3390 (1964).

11a. Wakley W. D., Varga L.: Anal. Chem. 44, 169 (1972).
12. Sommer L., Langová M., Kubán̆ V.: Scr. Fac. Sci. Nat. Univ. J. E. Purkyně Brno, Chemia $I$, 8, 13 (1978).
13. Pollak M., Kubáň V.: This Journal 44, 725 (1979).
14. Janćá L., Kubáň V., Havel J., Sommer L.: This Journal, in press.

Translated by M. Śtuliková.


[^0]:    ${ }^{a}$ Standard deviation of absorbance determination; ${ }^{b}$ sum of the squares of the deviations $U=$ $=\left(A_{\text {exp }}-A_{\text {calc }}\right)^{2} ;{ }^{c} c_{\mathrm{L}}=2 \cdot 00 \cdot 10^{-5} \mathrm{~mol} \mathrm{I}^{-1}, c_{\mathrm{M}}=4 \cdot 80 \cdot 10^{-2} \mathrm{~mol}^{-2}, 365-555 \mathrm{~nm}$ à 10 $\mathrm{nm}, \mathrm{pH} 2.73-7.74$, number of measurements $n_{\mathrm{p}}=20$, calculation for species $\mathrm{LH}_{3}, \mathrm{LH}_{2}, \mathrm{LH}$, CdL and $\mathrm{Cd}_{2} \mathrm{~L}$ does not converge; ${ }^{d} c_{\mathrm{M}}=9 \cdot 484 \cdot 10^{-6} \mathrm{~mol}^{-1}, c_{\mathrm{L}}=1 \cdot 00 \cdot 10^{-4} \mathrm{~mol}^{-1}$, $460-555 \mathrm{~nm}$ à $5 \mathrm{~nm}, \mathrm{pH} 4 \cdot 50-9 \cdot 52$, number of measurements $n_{\mathrm{p}}=28$, calculation for models including the species $\mathrm{LH}_{2}, \mathrm{LH}^{-}, \mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}_{2}, \mathrm{CdL}_{2} \mathrm{H}^{-}, \mathrm{CdL}_{2}^{2-}$, or $\mathrm{LH}_{2}, \mathrm{LH}^{-}, \mathrm{CdL}_{2}^{2-}$, $\mathrm{CdL}_{2} \mathrm{H}_{3}^{+} ; \mathrm{LH}_{2}, \mathrm{LH}^{-}, \mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}_{2}, \mathrm{CdL}_{2}^{2} ; \mathrm{LH}_{2}, \mathrm{LH}^{-}, \mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}^{-}, \mathrm{CdL}_{2}^{2-} ; \mathrm{LH}_{2}$, $\mathrm{LH}^{-}, \mathrm{CdL}, \mathrm{CdL}_{2} \mathrm{H}^{-}, \mathrm{CdL}_{2}^{2-} ; \mathrm{LH}_{2}, \mathrm{LH}^{-}, \mathrm{CdLH}^{+}, \mathrm{CdL}^{2-}, \mathrm{CdL}_{2}^{2-}$, does not converge; ${ }^{\boldsymbol{e}} \mathrm{pH}=$ $=4 \cdot 49-9 \cdot 23$, number of measurements $n_{\mathrm{p}}=27, c_{\mathrm{L}}=2 \cdot 00 \cdot 10^{-4} \mathrm{moll}^{-1}, c_{\mathrm{M}}=9 \cdot 484 \cdot 10^{-6}$ mol $1^{-1}, 460-555 \mathrm{~nm}$ à 5 nm , calculation for models in $d$ does not couverge; ${ }^{f}$ ref. ${ }^{2} ;{ }^{g}$ graphical interpretation.

